Datasets#

Convenience small datasets

spatialdata.datasets.blobs(length=512, n_points=200, n_shapes=5, extra_coord_system=None, n_channels=3, c_coords=None)#

Blobs dataset.

Parameters:
  • length (int (default: 512)) – Length of the image/labels.

  • n_points (int (default: 200)) – Number of points to generate.

  • n_shapes (int (default: 5)) – Number of max shapes to generate. At most, as if overlapping they will be discarded

  • extra_coord_system (Optional[str] (default: None)) – Extra coordinate space on top of the standard global coordinate space. Will have only identity transform.

  • n_channels (int (default: 3)) – Number of channels of the image

Return type:

SpatialData

Returns:

: SpatialData object with blobs dataset.

spatialdata.datasets.blobs_annotating_element(name)#

Return the blobs dataset with the desired element annotated by the table.

Parameters:

name (Literal['blobs_labels', 'blobs_multiscale_labels', 'blobs_circles', 'blobs_polygons', 'blobs_multipolygons']) – Name of the element to annotate. One of “blobs_labels”, “blobs_multiscale_labels”, “blobs_circles”, “blobs_polygons”, “blobs_multipolygons”.

Return type:

SpatialData

Returns:

: SpatialData object with the desired element annotated by the table.

spatialdata.datasets.raccoon()#

Raccoon dataset.

Return type:

SpatialData