Datasets#
Convenience small datasets
- spatialdata.datasets.blobs(length=512, n_points=200, n_shapes=5, extra_coord_system=None, n_channels=3, c_coords=None)#
Blobs dataset.
- Parameters:
length (
int
(default:512
)) – Length of the image/labels.n_points (
int
(default:200
)) – Number of points to generate.n_shapes (
int
(default:5
)) – Number of max shapes to generate. At most, as if overlapping they will be discardedextra_coord_system (
Optional
[str
] (default:None
)) – Extra coordinate space on top of the standard global coordinate space. Will have only identity transform.n_channels (
int
(default:3
)) – Number of channels of the image
- Return type:
- Returns:
: SpatialData object with blobs dataset.
- spatialdata.datasets.blobs_annotating_element(name)#
Return the blobs dataset with the desired element annotated by the table.
- Parameters:
name (
Literal
['blobs_labels'
,'blobs_multiscale_labels'
,'blobs_circles'
,'blobs_polygons'
,'blobs_multipolygons'
]) – Name of the element to annotate. One of “blobs_labels”, “blobs_multiscale_labels”, “blobs_circles”, “blobs_polygons”, “blobs_multipolygons”.- Return type:
- Returns:
: SpatialData object with the desired element annotated by the table.
- spatialdata.datasets.raccoon()#
Raccoon dataset.
- Return type: